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Section A: Business and Activities  

(a) Contract Activities 

• Contract Modifications:  

Contract was officially extended between PHMSA and Texas A&M 
University (then internally with Texas A&M Engineering Experiment 
Station). NO COST amendment to Agreement# 693JK32250011CAAP is to 
extent the POP through September 25, 2025. 

• Educational Activities:  

o Student mentoring: Chi-Yang Li, Jazmine Aiya D. Marquez 

o Student internship: Jazmine Aiya D. Marquez will conduct an internship 
next summer in 2025 

o Career employed: Pingfan Hu received his PhD degree in May 2023 and 
now employed by Atlas Copco Power Technique North America 

• Others:  

o Dissemination of Project Outcomes: One invited seminar at the 
University of Arkansas and visit the low-speed wind tunnel for CO2 near 
field dispersion study in Skylark JIP.  

o Presented in the DOE/DOT Interagency Meeting; Oral presentation is 
accepted in REX 2025 by PRCI 

(b) Financial Summary 

• Federal Cost Activities: 

o PI/Co-PIs/students involvement: PI involvement with 0.75 month of time 
and efforts; Students with 12 months of time and efforts in total  

o Materials purchased/travel/contractual (consultants/subcontractors): 
Subcontractor NFPA cost for organizing TAP meeting and taking 
meeting minutes; no materials purchase and travel cost 

• Cost Share Activities: 

o Cost share contribution: ~1 months of PI’s time and efforts. He devoted 
his time to supervise the graduate students, organize TAP meetings, work 
with NFPA and other TAP members, review all work, technical trouble 
shooting for CFD, and submit the progress/annual reports. 
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(c) Project Schedule Update 

• Original Project Schedule:  

 

• Corrective Actions:  

Task 2 took about 5 quarters (year 1: Q3, Q4, year 2: Q1, Q2, Q3) and Task 3 
took about 3 quarters (year 2: Q3, Q4, year 3: Q1). We are now finishing Task 3 
and will work on Task 4 (year 3: Q2, Q3, Q4).  

• Original Project Schedule:  

Task Year 1 Year 2 Year 3 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1             

2             

3             

4             
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(d) Status Update of the 4th -8th Quarter Technical Activities 

• Task 2: Construct the database of CO2 dispersion under different scenarios 

o 2.1: Summarize the common CO2 pipeline operating conditions and the 
dispersion parameters determined for CFD simulations 

o 2.2: Summarize the database for the PIR for CO2 pipelines with different 
health consequences 

• Task 3: Perform QPCR analysis and identify the PIR for CO2 pipelines 

o 3.1: Summarize the structure of database by utilizing scatter plots, 
histograms, and correlation matrices to visualize the continuous variables 
of the QPCR model 

o 3.2: Integrate the results from selecting suitable descriptors, constructing 
the QPCR model, and evaluating its performance using R² and RMSE 
metrics 
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Section B: Detailed Technical Results in the Report Period 

1. Background and Objectives in the 2nd Annual Report Period 

1.1. Objectives in the 2nd Annual Report Period 

The primary objective of this project is to create a fast and widely applicable machine-learning 

based tool, based on simulations from CFD, for evaluating the outcomes of accidental CO2 

dispersion and establishing the PIR for CO2 pipelines. Therefore, the proposed project will consist 

of four stages: (1) Establish the CFD models of CO2 release and dispersion from a high-pressure 

pipeline; (2) Construct the database of CO2 dispersion under different scenarios; (3) Perform 

QPCR analysis and identify the PIR for CO2 pipelines; and (4) Develop a web-based tool to 

determine the PIR for CO2 pipelines and evacuation time for the surrounding public. In this 2nd 

annual report, we mainly focus on Stage 2 and part of Stage 3. 

2. Studies in the 2nd Annual Report Period 

2.1. Calculating the CO2 behavior in the near field 

As mentioned in the 1st annual report, 10 times of the distance of Mach disc (xm) from the pipe 

could be considered as the distance of near field. 

𝑥𝑥𝑚𝑚 = 0.6455 × 𝑑𝑑𝑒𝑒 × �
𝑃𝑃0
𝑃𝑃𝑎𝑎

 

Where 𝑑𝑑𝑒𝑒 is the diameter of the nozzle exit, 𝑃𝑃0 is the stagnation pressure, and 𝑃𝑃𝑎𝑎 is the 

ambient pressure. 

We can then calculate the velocity at the end of the near field based on the assumptions of no 

ambient fluid entrainment, isentropic flow relationships, and constant pressure at the rupture 
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point of the pipeline (Birch et al., 1987). 

𝑉𝑉𝐶𝐶𝐶𝐶2 = 𝑉𝑉0
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Where 𝑉𝑉𝐶𝐶𝐶𝐶2 is the velocity of CO2 in the atmosphere, 𝑉𝑉0 is the velocity in the pipeline, 𝐶𝐶𝐷𝐷 

(1 for the well-rounded nozzle) is the volume discharge coefficient, 𝛾𝛾 (1.30 for CO2) is 

the ratio of the heat capacities. 

In our previous near field simulations (Figure 1-2), it was observed that a large amount of air was 

entrained, which implied significant pressure drops as CO2 transitioned from the pipeline to the 

atmosphere. Given the relatively low atmospheric pressure (1 atm), we can use the ideal gas law 

and the conservation of mass equation to calculate the cross-sectional area of the fluid. However, 

the cross-section area is the function of CO2 composition, while CO2 composition is also the 

function of cross-section from calculating the results from simulations (Figure 2). After some 

trial and error, the CO2 mass fraction was calculated to be 0.2644.  

 

Figure 1. Near field simulations. 



8 
 

 

Figure 2. Data from near field simulations: (a) Velocity versus radial distance; (b) CO2 mass 

fraction versus radial distance. 

Because the goal for the simulations is for safety purposes, overestimation is preferred. 

Therefore, we assumed the fluid composition at the end of the near field to be 30% CO2 and 70% 

air. Based on this, we can calculate the fluid velocity as follows. 

𝑉𝑉𝑎𝑎 = 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 0.7 + 𝑉𝑉𝐶𝐶𝐶𝐶2 × 0.3 

Where 𝑉𝑉𝑎𝑎 is the velocity of fluid in the atmosphere, and 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the velocity of wind. 

Furthermore, since the scenario involves CO2 release from both ends of the ruptured pipeline, we 

double the mass flow rate for the simulations. As fluid velocity is a critical factor for dispersion, 

we also double the release cross-sectional area, using the previously calculated velocity, to run 

the simulations. Consequently, the fluid composition, velocity, and area are used to represent the 

near-field behavior, and Ansys Fluent is applied to simulate the far-field dispersion. 
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2.2. CFD Far-field stage 

With calculated near field behavior, we could integrate the velocity, CO2 mass fraction, weather 

conditions, parameters from Table 1, and five geometries ( 

Figure 3-Figure 7) to conduct the simulation for far field stage to investigate CO2 concentration 

versus the distance. 

Table 1. The variables for pipeline characteristics and weather conditions. 

 Variable High Medium Low 

Pipeline characteristics 

pressure (MPa) 20 10 1 

diameter (inch) 30 16 4 

flow rate (MMcfd) 1300 590 30 

Weather conditions 
wind speed (mph) 25 14 3 

temperature (°F) 100 60 0 

 

Figure 3. Monticello, Mississippi (Flat) 



10 
 

 

Figure 4. Walsenburg, Colorado (Medium Hill, SH) 

 

Figure 5. Raton, New Mexico (Big Hill, BH) 

 

Figure 6. Calistoga, California (Medium Valley, VM) 
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Figure 7. Vernal, Utah (Big Valley, VB) 

However, there are over one thousand various scenarios, so it would be extremely difficult to 

conduct all of them manually. Fortunately, there is a Python package, named PyFluent which is 

provided by Ansys Fluent, which could do us a favor. Thus, once the meshes were created, the 

subsequent process involved repetitive tasks, such as adjusting parameters, running simulations, 

and saving results. To streamline this, we used PyFluent package to automate the steps and 

execute the simulations. Therefore, all the tasks could be conducted in more efficient way. The 

boxplots for each of them are shown in Figure 8-Figure 12, while the histograms for each 

scenarios are displayed in Figure 13-Figure 17.  

From the data, we observed that the sequence of CO2 dispersion distances, from farthest to 

shortest, follows this order: flat terrain, medium valley, medium hill, big valley, and big hill. 

These results differ from our initial expectation that the valleys would allow CO2 to disperse the 

farthest. The reason is that the valleys the CO2 pipeline passes through are located on hills with 

slopes. Therefore, these valleys are not flat-bottomed, like Santa Elena Canyon in Big Bend 

National Park. As a result, the slopes hindered CO2 dispersion in the valleys, preventing it from 

reaching farther than on flat terrain. However, the valley still could have farther dispersion.  
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Figure 8. Boxplot of distances for Flat. 

 

Figure 9. Boxplot of distances for SH. 
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\  

Figure 10. Boxplot of distances for BH. 

 

Figure 11. Boxplot of distances for VM. 
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Figure 12. Boxplot of distances for VB. 

 

Figure 13. Histograms for Flat: (a) 9% CO2; (b) 4% CO2; (c) 1% CO2. 
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Figure 14. Histograms for SH: (a) 9% CO2; (b) 4% CO2; (c) 1% CO2. 

 

Figure 15. Histograms for BH: (a) 9% CO2; (b) 4% CO2; (c) 1% CO2. 

 

Figure 16. Histograms for VM: (a) 9% CO2; (b) 4% CO2; (c) 1% CO2. 
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Figure 17. Histograms for VB: (a) 9% CO2; (b) 4% CO2; (c) 1% CO2. 

2.3. Quantitative Property Consequence Relationship Models (QPCR) 

The use of machine learning algorithms to train large consequence databases for comprehensive 

consequence prediction was first introduced by Sun et al., (2020). This approach was later 

formalized by (Jiao et al., 2020) who applied it to flammable dispersion in 2020, naming the 

method quantitative property-consequence relationship (QPCR) analysis. QPCR was inspired by 

the well-established quantitative structure-property relationship (QSPR) method, which uses 

structural attributes as descriptors to build mathematical relationships between molecular 

structures and properties at the quantum chemistry level (Jiao et al., 2019). A procedural diagram 

of the QSPR model development is shown in Figure 18. While QSPR has been widely used for 

hazardous property prediction, QPCR differs in that it uses property descriptors as independent 

variables and quantifies consequence values as dependent variables for predicting outcomes. As 

illustrated in Figure 18, the steps of descriptor calculation and screening in QSPR are replaced by 

consequence data generation and collection in QPCR. This method bridges the gap between 

microscale chemical properties and macroscale consequences, offering a promising approach for 

developing more reliable and broadly applicable predictions (Jiao et al., 2020). 
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Figure 18. QPCR Development Procedure Diagram 

For the project, descriptors are pressure (MPa), diameter (inch), flow rate (MMcfd), wind speed 

(mph), and temperature (°F). Therefore, we used these features to predict the distances of 9% 

CO2, 4% CO2, and 1 % CO2. Due to the significant variation in the distance distributions across 

the three different concentrations, we developed separate models for each concentration. 

Additionally, because the distributions of distances are skewed (Figure 13-Figure 17), logarithm 

transformation were applied to the distances, which made the distributions closer to the normal 

distribution. Furthermore, the correlation matrices for each geometry are shown in Figure 19-

Figure 23. From the correlation matrices, it demonstrates that the flow rate has the highest 

correlation coefficient with distances. 
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Figure 19. Correlation matric for Flat. 

 

Figure 20. Correlation matric for SH. 
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Figure 21. Correlation matric for BH. 

 

Figure 22. Correlation matric for VM. 
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Figure 23. Correlation matric for VB. 

On the other hand, the machine learning models used to identify the best-performing model 

included multiple linear regression (MLR), support vector regression (SVR), k-nearest neighbors 

(KNN), random forest (RF), extreme gradient boosting regression (XGBoost), gradient boosting 

regression (GBR), and bootstrap aggregating (Bagging). R² scores, along with 10-fold cross-

validation, were used to select the best model and evaluate performance. In each model, the input 

features were gauge pressure, pipeline diameter, CO2 flow rate, wind speed, and ambient 

temperature, while the output (response) was the corresponding distance from the simulation. A 

random search of hyperparameters, considered a more efficient method for optimizing model 

performance, was conducted for each model. The best version of each machine learning model is 

presented in Tables 7, 9, 11, 13, and 15, with the hyperparameters of the best models shown in 

Tables 8, 10, 12, 14, and 16. The 10-fold cross-validation predictions are illustrated in Figures 24 
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to 28. All models achieved an R² score higher than 0.93, indicating high prediction accuracy. 

Table 2. Performance for each fine-tuned machine learning model for Flat. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9665 0.0384 
Bagging 0.9691 0.0301 

Random Forest 0.9688 0.0300 
XGBoost 0.9782 0.0286 

K nearest neighbors 0.6703 0.1188 
Multiple Linear Regression 0.4806 0.1564 
Support Vector Regression 0.7775 0.0939 

4 

Gradient Boosting 0.9635 0.0270 
Bagging 0.9600 0.0355 

Random Forest 0.9604 0.0352 
XGBoost 0.9690 0.0453 

K nearest neighbors 0.7520 0.1533 
Multiple Linear Regression 0.5468 0.1470 
Support Vector Regression 0.7869 0.1187 

1 

Gradient Boosting 0.9849 0.0125 
Bagging 0.9833 0.0119 

Random Forest 0.9836 0.0105 
XGBoost 0.9886 0.0112 

K nearest neighbors 0.9242 0.0393 
Multiple Linear Regression 0.7943 0.0795 
Support Vector Regression 0.9236 0.0333 
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Table 3. Performance for each fine-tuned machine learning model for SH. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9830 0.0348 
Bagging 0.9804 0.0124 

Random Forest 0.9806 0.0122 
XGBoost 0.9918 0.0093 

K nearest neighbors 0.6650 0.1575 
Multiple Linear Regression 0.4114 0.2990 
Support Vector Regression 0.7682 0.1172 

4 

Gradient Boosting 0.9672 0.0213 
Bagging 0.9663 0.0282 

Random Forest 0.9665 0.0251 
XGBoost 0.9700 0.0346 

K nearest neighbors 0.7345 0.1029 
Multiple Linear Regression 0.4470 0.1690 
Support Vector Regression 0.7738 0.0767 

1 

Gradient Boosting 0.9940 0.0039 
Bagging 0.9917 0.0043 

Random Forest 0.9918 0.0048 
XGBoost 0.9950 0.0026 

K nearest neighbors 0.9474 0.0263 
Multiple Linear Regression 0.7764 0.0841 
Support Vector Regression 0.9490 0.0292 

Table 4. Performance for each fine-tuned machine learning model for BH. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9875 0.0079 
Bagging 0.9794 0.0109 

Random Forest 0.9795 0.0110 
XGBoost 0.9878 0.0075 

K nearest neighbors 0.6632 0.0999 
Multiple Linear Regression 0.5376 0.1397 
Support Vector Regression 0.7669 0.0921 
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4 

Gradient Boosting 0.9301 0.0409 
Bagging 0.9272 0.0698 

Random Forest 0.9301 0.0629 
XGBoost 0.9288 0.0545 

K nearest neighbors 0.6416 0.1877 
Multiple Linear Regression 0.2711 0.3867 
Support Vector Regression 0.7174 0.1020 

1 

Gradient Boosting 0.9605 0.0237 
Bagging 0.9566 0.0293 

Random Forest 0.9575 0.0271 
XGBoost 0.9627 0.0210 

K nearest neighbors 0.7759 0.1128 
Multiple Linear Regression 0.5947 0.1612 
Support Vector Regression 0.8121 0.0556 

Table 5. Performance for each fine-tuned machine learning model for VM. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9618 0.0364 
Bagging 0.9567 0.0298 

Random Forest 0.9574 0.0242 
XGBoost 0.9725 0.0220 

K nearest neighbors 0.6552 0.1310 
Multiple Linear Regression 0.4830 0.1194 
Support Vector Regression 0.7775 0.1117 

4 

Gradient Boosting 0.9160 0.0592 
Bagging 0.9232 0.0656 

Random Forest 0.9244 0.0624 
XGBoost 0.9330 0.0896 

K nearest neighbors 0.6489 0.1178 
Multiple Linear Regression 0.3963 0.0786 
Support Vector Regression 0.6946 0.1359 

1 
Gradient Boosting 0.9907 0.0092 

Bagging 0.9801 0.0091 
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Random Forest 0.9801 0.0086 
XGBoost 0.9930 0.0054 

K nearest neighbors 0.8853 0.0364 
Multiple Linear Regression 0.7816 0.0701 
Support Vector Regression 0.8801 0.0260 

Table 6. Performance for each fine-tuned machine learning model for VB. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9656 0.0176 
Bagging 0.9713 0.0225 

Random Forest 0.9714 0.0228 
XGBoost 0.9762 0.0238 

K nearest neighbors 0.7500 0.1345 
Multiple Linear Regression 0.5813 0.1287 
Support Vector Regression 0.8231 0.1026 

4 

Gradient Boosting 0.9428 0.0444 
Bagging 0.9462 0.0345 

Random Forest 0.9480 0.0326 
XGBoost 0.9626 0.0264 

K nearest neighbors 0.7567 0.1161 
Multiple Linear Regression 0.4461 0.1998 
Support Vector Regression 0.7800 0.0954 

1 

Gradient Boosting 0.9942 0.0044 
Bagging 0.9859 0.0047 

Random Forest 0.9861 0.0047 
XGBoost 0.9952 0.0028 

K nearest neighbors 0.8901 0.0305 
Multiple Linear Regression 0.7897 0.0968 
Support Vector Regression 0.8940 0.0269 
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Figure 24. Actual vs. Predicted distances (10-fold cross validation) for Flat: (a) Distance for 9% 

CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 25. Actual vs. Predicted distances (10-fold cross validation) for SH: (a) Distance for 9% 

CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 26. Actual vs. Predicted distances (10-fold cross validation) for BH: (a) Distance for 9% 

CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 27. Actual vs. Predicted distances (10-fold cross validation) for VM: (a) Distance for 9% 

CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 28. Actual vs. Predicted distances (10-fold cross validation) for VB: (a) Distance for 9% 

CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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2.4. Time to reach the steady state 

All the CFD simulations were conducted under steady state conditions. Based on discussions 

with CO2 pipeline operators, incidents involving CO2 releases from pipelines typically result in 

discharges lasting approximately 20 to 30 minutes. This study aims to determine the time 

required to achieve the steady state. 

To assess the time to reach steady state, a transient simulation with a time step of 0.1 seconds 

was performed. The case with the farthest dispersion was used and the corresponding parameters 

are enumerated in Table 7. As shown in the simulation results (Figure 29), concentrations of 9%, 

4%, and 1% stabilized at approximately 80, 180, and 500 seconds, respectively, all of which are 

significantly shorter than 20 minutes. Therefore, the use of steady-state simulations is rational. 

Table 7. Parameters applied for study. 

Variable Pressure 
(MPa) 

Diameter 
(inch) 

Flow rate 
(MMcfd) 

Wind speed 
(mph) 

Temperature  
(°F) 

Value 10 30 1300 25 60 
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Figure 29. Distances of CO2 concentration versus time: (a) 9%, (b) 4%, and (c) 1%. 
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3. Future Work 

• Study the evacuation time for the surrounding public. Therefore, the emergency response 

plan can be organized accordingly to ensure the safety of the communities nearby. 

• Conduct near-field simulations with the application of UDFs and UDRGMs in Ansys Fluent. 

• Develop a web-based tool to determine the PIR for CO2 pipelines. 
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